If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6x2 + -48 = -2x Reorder the terms: -48 + 6x2 = -2x Solving -48 + 6x2 = -2x Solving for variable 'x'. Reorder the terms: -48 + 2x + 6x2 = -2x + 2x Combine like terms: -2x + 2x = 0 -48 + 2x + 6x2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(-24 + x + 3x2) = 0 Factor a trinomial. 2((-3 + -1x)(8 + -3x)) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-3 + -1x)' equal to zero and attempt to solve: Simplifying -3 + -1x = 0 Solving -3 + -1x = 0 Move all terms containing x to the left, all other terms to the right. Add '3' to each side of the equation. -3 + 3 + -1x = 0 + 3 Combine like terms: -3 + 3 = 0 0 + -1x = 0 + 3 -1x = 0 + 3 Combine like terms: 0 + 3 = 3 -1x = 3 Divide each side by '-1'. x = -3 Simplifying x = -3Subproblem 2
Set the factor '(8 + -3x)' equal to zero and attempt to solve: Simplifying 8 + -3x = 0 Solving 8 + -3x = 0 Move all terms containing x to the left, all other terms to the right. Add '-8' to each side of the equation. 8 + -8 + -3x = 0 + -8 Combine like terms: 8 + -8 = 0 0 + -3x = 0 + -8 -3x = 0 + -8 Combine like terms: 0 + -8 = -8 -3x = -8 Divide each side by '-3'. x = 2.666666667 Simplifying x = 2.666666667Solution
x = {-3, 2.666666667}
| 7n^2-12=25n | | 7b^2=-14+51b | | 7n^2=-14+51b | | (653866.6667+-0.6666666667(980800+-1C)+-0.6666666667C)+(980800+-1C)+C+19200=1000000 | | 50*x+120*(92-x)= | | (653866.6667+-0.6666666667B+-0.6666666667C)+(980800+-1C)+C+19200=1000000 | | 2(5-x)-(x-7/2)=x-7 | | 2x+9=-6x-5 | | (653866.6667+-0.6666666667B+-0.6666666667C)+B+C+19200=1000000 | | A+.5A+B+C+19200=1000000 | | 5m^2+10m-80=7 | | (653866+.66A)+19200=1000000 | | 2.75x+24=3 | | 2.75x+24=30 | | 3x+6=6x+24 | | 20x-15=28x-7 | | 3x=1x+3 | | -5.64*x^2+3.64x+1.62=0 | | 6(5m-8)= | | 4x+5=128 | | 6p+3+10p+29= | | 11-3x=6-5x | | a+6=3-2 | | 10n-(-n)= | | 2sin(2x)-3=0 | | y+26=5y+4 | | -2.8-0.7p=0.9p+5.3 | | 2n+41=5n-1 | | 120=0.05x^2+1.1x | | 2p^2-8p-60=O | | 7e^3x+3=9 | | 3c+12=6c+10.86 |